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Lecture 7: Systematic Absences

The reason that we have focussed on crystal symmetry for the last four lectures is that
symmetry is going to help us to simplify the interpretation of crystallographic experiments.
The crux of this lecture is to understand how the various symmetry elements — Bravais
lattice, translational symmetry and point symmetry — affect diffraction patterns. What we
are leading towards is being able to use the symmetry of an observed diffraction pattern in
reciprocal space to deduce the symmetry about the crystal in real space.

We begin by making two simple but important observations.

(i) The structure factors at reciprocal space vectors Q and −Q are in fact complex con-
jugates; i.e. F (hkl) = F ∗(h̄k̄l̄). This result, known as “Friedel’s law”, means that
the corresponding diffraction intensities are equal: I(hkl) = I(h̄k̄l̄). Importantly, the
diffraction pattern of a crystal is necessarily centrosymmetric irrespective of whether
or not the crystal itself has a centre of symmetry.

(ii) The point symmetry of an object is preserved in its diffraction pattern. As a simple
example, let us imagine that we have a system that possesses a 2-fold axis parallel
to z, running through the origin. Then we can divide all the atoms in our system
into three groups. The first group contains all those atoms that lie on the axis itself,
and we know that these will have coordinates (0, 0, z). We then divide the remaining
atoms into two equal groups such that each atom in one group will be mapped onto
an atom in the second group by the 2-fold axis. That is, for each atom at (x, y, z), we
know that there is an equivalent atom at (−x,−y, z), and we place one atom in our
second group, and one atom in our third group. Taking an arbitrary point in reciprocal
space (h, k, l), we will show that the Fourier component at this point is the same as
that at (−h,−k, l), and hence the diffraction pattern will also contain a 2-fold axis, this
time lying perpendicular to c∗.
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F (hkl) =
∑

j

fj exp[2πi(hxj + kyj + lzj)] (1)

=
∑

j∈group1

fj exp[2πi(lzj)] +
∑

j∈group2

fj exp[2πi(hxj + kyj + lzj)]

+
∑

j∈group3

fj exp[2πi(−hxj − kyj + lzj)] (2)

=
∑

j∈group1

fj exp[2πi(lzj)] +
∑

j∈group2

fj exp[2πi((−h)xj + (−k)yj + lzj)]

+
∑

j∈group3

fj exp[2πi(−(−h)xj − (−k)yj + lzj)] (3)

= F (h̄k̄l) (4)

(here, the notation (h̄k̄l) is shorthand for (−h,−k, l)).

Taken together, these two results mean that the point group of a diffraction pattern
is the centrosymmetric parent of the point group of the crystal.The point group of a
diffraction pattern is usually called the “Laue class” of the diffraction pattern; the relation-
ship between Laue classes and point groups is shown in the table below.

Crystal system Laue class Point groups of the Laue group

Triclinic 1̄ 1 1̄

Monoclinic 2/m 2 m 2/m

Orthorhombic mmm 222 mm2 mmm

Trigonal 3̄ 3 3̄

3̄m 32 3m 3̄m

Tetragonal 4/m 4 4̄ 4/m

4/mmm 422 4mm 4̄2m 4/mmm

Hexagonal 6/m 6 6̄ 6/m

6/mmm 622 6mm 6̄m2 6/mmm

Cubic m3 23 m3

m3̄m 432 4̄3m m3̄m

You should be able to convince yourself that the diffraction pattern for a crystal in I41cd

will have 4/mmm point symmetry; likewise, that of a crystal in P62 will have 6/m point
symmetry.

Having established the effect of point symmetry on the diffraction pattern, we now proceed
to show that the translational symmetry elements do not affect the symmetry of the diffrac-
tion pattern per se, but do result in what we call “systematic absences” — the absence of
any diffraction intensity at specific sets of reciprocal lattice points.
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The first type of systematic absences we will address are those that arise due to lattice
centering. Let us consider a face-centred lattice (presumably of orthorhombic or cubic
lattice symmetry, but this doesn’t matter). What we know is that for each atom j in the
unit cell at (xj, yj, zj) there are corresponding atoms j′, j′′ and j′′′ at (xj, yj + 1

2
, zj + 1

2
),

(xj + 1
2
, yj, zj + 1

2
) and (xj + 1

2
, yj + 1

2
, zj), respectively. Consequently, we can split our

scattering equations into four parts:

F (hkl) =
∑

j

fj

{
exp[2πi(hxj + kyj + lzj)]

+ exp[2πi(hxj + k{yj + 1
2
}+ l{zj + 1

2
})]

+ exp[2πi(h{xj + 1
2
}+ kyj + l{zj + 1

2
})]

+ exp[2πi(h{xj + 1
2
}+ k{yj + 1

2
}+ lzj)]

}
(5)

On factorising we obtain

F (hkl) =
{

1 + exp[πi(k + l)] + exp[πi(h+ l)] + exp[πi(h+ k)]
}

×
∑

j

fj exp[2πi(hxj + kyj + lzj)] (6)

It is not difficult (and a good exercise) to show that the prefactor is zero for all h, k, l except
whenever the three indices are all even or are all odd (when it equals four). This means
that for a face centred crystal we do not expect to observe any intensity for e.g. the (100),
(321), . . . reflections. Let us use this result to visualise reciprocal space for a face-centred
lattice:

What we find is that the reciprocal lattice of a face-centred cubic lattice is itself a body-
centred cubic lattice in reciprocal space, a result that we met in Lecture 1. It is a good
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exercise to check that the reverse also holds true; that is, to confirm that a body-centred
lattice is face-centred in reciprocal space. Consequently, the centering of a diffraction
pattern we observe experimentally will tell us what particular type of centering exists in
real space. This enables us to start determining the space group for our crystal.

The other two translational symmetry operations, namely screw axes and glide planes,
also give rise to systematic absences. The mathematics involved is very similar, if a little
tedious. We cover some representative derivations here only really to explain from where
these results arise; what is important is only that the absences occur, and that we know
how to recognise and interpret these in a diffraction pattern.

Let us address quickly the mathematics for screw axes, and we will use as our example
a crystal that contains a 21 screw axis parallel to b. This will have the effect of replicating
each atom j, originally at (xj, yj, zj), at (−xj,

1
2

+ yj,−zj). The structure factor is then given
as

F (hkl) =
∑

j

fj

{
exp[2πi(hxj + kyj + lzj)] + exp[2πi(−hxj + k{1

2
+ yj} − lzj)]

}
. (7)

What we do is to consider the intensity at reciprocal lattice points of the type (0k0):

F (0k0) =
∑

j

fj

{
exp(2πikyj) + exp[2πik(1

2
+ yj)]

}
(8)

= [1 + (−1)k]
∑

j

fj exp(2πikyj) (9)

{ =

6=
0 if k = 2n+ 1 (odd)

0 if k = 2n (even)
, (10)

where n is an integer. What this tells us is that (0k0) reflections with odd values of k will
not be observed: a new set of “systematic absences” that we should be able to observe in
a diffraction pattern. Similar systematic absences would arise from screw axes along other
directions.

For completeness we will cover a similar calculation for glide planes. This time our example
will be a c-glide perpendicular to b. This will replicate each atom j, originally at (xj, yj, zj),
at (xj,−yj,

1
2

+ zj). Writing out the structure factor explicitly we obtain

F (hkl) =
∑

j

fj

{
exp[2πi(hxj + kyj + lzj)] + exp[2πi(hxj − kyj + l{1

2
+ zj})]

}
. (11)

Now, for (h0l) reflections we have
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F (h0l) =
∑

j

fj

{
exp[2πi(hxj + lzj)] + exp[2πi(hxj + l{1

2
+ zj})]

}
(12)

= [1 + (−1)l]
∑

j

fj exp[2πi(hxj + lzj)] (13)

{ =

6=
0 if l = 2n+ 1 (odd)

0 if l = 2n (even)
, (14)

where again n is an integer. Similar systematic absences arise from glide planes involving
other directions.

We can summarise these three types of systematic absences in three separate tables.

Conditions due to lattice centering:

Centering Reflection condition Reflections involved
I h+ k + l = 2n

F h, k, l all even or all odd

A k + l = 2n

B h+ l = 2n all reflections

C h+ k = 2n

R (obverse) −h+ k + l = 3n

R (reverse) h− k + l = 2n

Conditions due to the existence of screw axes:

Screw axis Reflection condition Reflections involved
21 h, k or l = 2n

42, 63 l = 2n h00 for axis ‖ a

31, 32, 62, 64 l = 3n 0k0 for axis ‖ b

41, 43 l = 4n 00l for axis ‖ c

61, 65 l = 6n

Conditions due to the existence of glide planes (n.b. this list is not comprehensive for the
d-glides):
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Glide plane Reflection condition Reflections involved
a h = 2n

b k = 2n 0kl for plane ⊥ a

c l = 2n h0l for plane ⊥ b

n h+ k, k + l or h+ l = 2n hk0 for plane ⊥ c

d h+ k, k + l or h+ l = 4n

More important than all this book-keeping is the ability to interpret systematic absences
within a diffraction pattern. In order to build up our expertise here what we are going to
do is to consider some simplified reflection diagrams. These are illustrations that show
what reflections we expect to see in a diffraction pattern (without worrying about the actual
intensities). We will only deal with orthorhombic crystals, for which we will encounter three
separate planes in reciprocal space — one perpendicular to each of the three crystal axes.

Let us consider the orthorhombic space group Pnma. Because we are dealing with a
primitive lattice, we do not expect any absences due to lattice centering. Again, we work
systematically, dealing first with the n-glide, which we know lies perpendicular to a. Look-
ing through our table above we see that this this will give rise to absences in the (0kl)

reciprocal plane whenever k + l is odd. To represent this we sketch a reflection diagram
for the (0kl) plane (above). The central reflection, which is shown as a larger circle, corre-
sponds to (000); k indexes the horizontal axis and l the vertical axis. We draw in smaller
circles wherever we expect to see reflections: in this case whenever k + l is even. Two
representative points are labelled — (011) and (01̄3̄).

Working systematically we consider the next character in the space group symbol: the m,
which tells us we have mirror planes perpendicular to b. There are no systematic absences
associated with mirror planes, so we might initially draw a reflection diagram for the (h0l)

plane as overleaf. This is not yet quite correct, and we will see why shortly.
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The last character in the space group symbol tells us that we have an a-glide perpendicular
to c. Again, consulting our table of reflection conditions, we see that this predicts reflections
for the (hk0) plane will only be observed whenever h is even. Transferring this to a reflection
diagram, we obtain the following initial guess.

The final — and very important — step is to check for consistency along the three axes
(h00), (0k0), (00l). Considering the systematic absences we found for the (0kl) plane, for
example, we see that we expect reflections along (0k0) and (00l) only when k or l are even.
But this is not yet reflected in the diagrams for (hk0) and (h0l) planes. Similarly, the a-glide
absences on (hk0) tell us that we will observe (h00) reflections only when h is even; again
we need to represent this on the (h0l) diagram. Putting all this information together, we
arrive at the set of reflection diagrams shown on the next page.

It is worth reiterating that the crystal itself does not “know” which axis is which, so the
labels themselves are somewhat arbitrary. Here we can label the axes because we are
starting from the particular space group symbol Pnma. However, if we were to undertake
the reverse process — that is, to recover the space group symbol from the scattering
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patterns — then we would end up with different, but equivalent, space group symbols for
each possible choice of axes. Note that the International Tables only list unique space
groups.

We are going to finish this lecture with a quick discussion of systematic absences in pow-
der diffraction patterns. Because in a powder diffraction experiment we have many small
crystallites oriented in all possible directions, what happens is that all of reciprocal space
is effectively projected onto a single axis. We can’t resolve any directions within reciprocal
space but we can still determine magnitudes. An example of a powder diffraction pattern
for a face-centred cubic material is shown below. The important point here is to illustrate
that we can still see systematic absences; in this case, for example, we could say with con-
fidence that the material is face-centred cubic. The situation becomes more complex for
orthorhombic systems, and it may be that not all systematic absences can be determined
in this way.


